
TEMPERATURE CONTROL OF MULTI-INPUT MULTI-OUTPUT CROSS-
COUPLED INDUSTRIAL OVENS

Lauzier Pereira de Araujo, M.Sc.
Nortel Networks.
Av. Cristovão Colombo 485, 14o Andar, Savassi, 30.140-140 Belo Horizonte, MG, Brazil.
Phone: +55 31 269-7209. Email: lauzier@nortelnetworks.com.

José Maria Gálvez, Ph.D.
Department of Mechanical Engineering, Federal University of Minas Gerais, Brazil.
Av. Antônio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, MG, Brazil.
Phone: +55 31 499-5236. Fax: +55 31 443-3783. Email: jmgm@dedalus.lcc.ufmg.br.

ABSTRACT. This paper considers the application of frequency domain techniques to the
design of multivariable output feedback controllers for nonlinear, multiple-heating-zones
industrial ovens. Specifically, the application of multivariable frequency domain techniques
to a nonlinear oven with six heating zones is presented. Due to the oven construction, the
heat flow rate among the zones was high and so it was the cross-coupling between inputs and
outputs. The system decoupling is reached by using a pre-compensator tuned at 0 rd/min.
Since the pre-compensated plant became clearly diagonal dominant at low frequencies, the
system specification are reached using a MIMO diagonal PID controller. Multivariable
frequency domain techniques are used to analyze the system, to obtain the system decoupling
and to validate a single-input single-output (SISO) linear control design approach.
Simulation results are presented.
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1. INTRODUCTION

Incorrect control tuning is one of the main causes for poor control performance and
unnecessary economic cost in industry Bialkowski (1993). The difficulties in the control
tuning procedures are direct consequence of inaccurate plant models,  plant nonlinear
characteristics and time delays, among others.

In the case of SISO systems, control parameters are frequently set to factory values or are
manually tuned in a trial and error procedure. The reason for this is the lack of systematic
procedures for tuning industrial controllers. In the MIMO case, the control tuning currently
requires sophisticated techniques to reduce the usually existing cross interaction between
inputs and outputs. This interaction obscures the effects of a specific loop controller on the
system behavior. Thus, overcome the cross-coupling between inputs and outputs has become
one of the primary objectives in multivariable control.

Several interesting multivariable control design techniques have been proposed by the
scientific community, some of them are given in  Desoer et al (1980), Doyle et al (1981),
Edmunds et al (1979), Kouvaritakis et al (1979), MacFarlane et al (1977) and Mees, (1989).
Traditionally, however, engineers in industry are used to the widely accepted standard tuning



procedures for SISO systems. For this reason, tuning schemes for MIMO systems will
succeed and be quickly accepted by the industry community as long as they are simple and
similar to the ones for the SISO case. Using the same tuning algorithms, different people must
arrive to the same values for the control parameters, this clearly requires a systematic tuning
procedure.

In the case of temperature control, the control design problem is still more challenging
due to the time delays and nonlinear parameters involved in the process. Multiple-input
multiple- output industrial furnaces and ovens are among the most common  industrial
processes which still require improved and simple techniques for tuning output feedback
controllers.

Large industrial ovens usually include several heating zones with individual sensors and
actuators to control the output temperature profile. However, due to the heat flow among
these zones there is a cross iteration among sensors and actuators. As in other cases of
multiple-input multiple-output systems this iteration may become relevant and cause serious
difficulties to the control system.

2. A BRIEF REVIEW

This section presents a brief review of the basic concepts on multivariable control
systems, the following is based on the books from Maciejowski (1989) and Skogestad et al
(1989):

In general, MIMO systems are represented by a matrix transfer function of the form:

y s T s P s r s S s d s T s m s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − (1)

where r(s) is the reference input, d(s) represents the disturbances and m(s) is the measurement
noise.

In this case, S s( )  is known as the sensitivity matrix and is given by:

S s I G s K s( ) [ ( ) ( )]= + −1 (2)

T(s) is the system closed loop transfer function matrix (or complementary sensitivity
function) and is given by:

T s I G s K s G s K s S s G s K s( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( )= + =−1 (3)

also,  the input sensitivity functions are defined as

S s I K s G si ( ) [ ( ) ( )]= + −1

T s I K s G s K s G s K s G s S si i( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( )= + =−1 (4)

Considering a multiplicative model for the plant uncertainty one has:

G s G s I W si( ) ( )[ ( )]= +0 (5)



Then, from the literature , the following criteria to evaluate the system performance and
stability can be established (Maciejowski, 1989), (Skogestad, 1989):

•  The criterion for nominal performance is defined by

S s W sp( ) ( )
∞

< 1 (6)

where Wp(s) is a performance weighting matrix.

In the  case that Wp(s) has the form

[ ]W s w s Ip p( ) ( )= (7)

the criterion for nominal performance becomes

σ[ ( )]
( )

S s
w sp

< 1 (8)

where σ [. ] is the greatest singular value of [.]

•  The criterion for robust performance (non structured uncertainty) is given by

( ) ( )γ σ σw s S s w s T sp i i i( ) ( ) ( ) ( )+ ≤1
(9)

where γ = min (plant condition number, controller condition number).

•  The criterion for robust stability (non structured uncertainty) is defined by

T s W si( ) ( )
∞

< 1
(10)

where W si ( )  is an uncertainty weighting matrix.

In the case that W si ( )  has the form

[ ]W s w s Ii i( ) ( )= (11)

the criterion for robust stability becomes

σ[ ( )]
( )

T s
w si

< 1 (12)

•  The robust performance condition for structured uncertainty, (Doyle et al, 1981), is given
by

( )µ ωQ s( ) < ∀1 (13)



where the matrix Q s( )  is defined as

Q s
w s S s w s S s G s

w s K s S s w s K s S s G s
p p

i i

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
=

− −










0 0 0

0 0 0

(14)

with

( )S s I G s K s0 0

1
( ) ( ) ( )= + − (15)

•  The robust stability condition for structured uncertainty Doyle et al (1981),  is given by

( )µ ωQ s22 1( ) < ∀ (16)

where

Q s w s K s S s G si22 0 0( ) ( ) ( ) ( ) ( )= − (17)

3. THE PLANT

The case studied is a tubular-shaped electrical oven with six inputs and six outputs, and
six meters long. The control objective is to regulate the temperature profile (Galvez et al,
1995). A major challenge in this case is that the construction specifications work against the
control performance: To improve the smoothness of the temperature profile, the iteration
(heat flow) among the heating zones must be as large as possible which causes the
undesirable cross-coupling among sensors and actuators.

The saturation characteristics of the power source and the two different time constants
for heating and cooling make the system a nonlinear one. However, it was shown in Galvez et
al (1995) that for some temperature profiles the system behaves linearly allowing linear
analysis and design. Dynamic tests were performed to obtain and validate a linear model.
Based on experimental results, a simplified tri diagonal matrix transfer function model was
built such that

Y s G s U s( ) ( ) ( )= (18)

where
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with
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and



[ ]Y s y s y s y s y s y s y s
T

( ) ( ) ( ) ( ) ( ) ( ) ( )= 1 2 3 4 5 6 (21)

[ ]U s u s u s u s u s u s u s
T

( ) ( ) ( ) ( ) ( ) ( ) ( )= 1 2 3 4 5 6 (22)

Figure 1 shows the frequency response of the G sii ( ) transfer function (main diagonal).
Notice that the cross-over frequency (0 dB) is around  0.15 rd/min. Figure 2 shows  partial
Bode diagrams of the open loop system.
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Figure 1. Frequency response of G sii ( ) .
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Figure 2. Bode diagrams of the open loop
system.

Figure 3 shows (from bottom to top) the open loop step response for G22(s) (Zone 2) with
no cross-coupling, one-side cross-coupling and two-side cross-coupling effects.
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Figure 3. The open loop step response (Zone 2).

4. THE CONTROLLER

Output feedback control has been extensively applied to industrial processes basically
because its design does not requires an exact model for the plant dynamics. To determine the
controller structure and its parameters, some design techniques in the time domain set the
controller design problem as an optimization problem. In these approaches the practical
aspects of the control problem are neglected in exchange for convenience in the theoretical
formulation and numerical solution of the optimization problem.



On the other hand, multivariable frequency domain methods are basically a sophisticated
generalization of the classical SISO frequency domain techniques and so they are usually
implemented following a trial and error procedure.

It should be noted, however, that behind the success of most design techniques, for
output feedback control, resides a natural property of dynamic systems: the pole dominance
concept. Even the most simple PID control design technique intrinsically uses this concept to
determine the controller parameters. In practice, the concept also allows the control manual
tuning with a relatively high rate of success. In this work, the pole dominance concept is used
to decouple the MIMO system at 0 rd/min and then a MIMO diagonal PID controller is
designed. To validate the controller design, multivariable techniques are used following a
more application-oriented approach. In the case studied, the steady state temperature profile
was the main control objective. So, the system was required to fulfill two basic specifications,
a fast transient response and a null steady state error. Figure 4 shows the system block
diagram.

Zone 1

Z1

Step1 

S3 

S2 

Zone 3

Z3

Zone 2

Z2

+
-

Sm3

PID

3

+
-

Sm2  

PID

2

PID

6

+
-

Sm6

Zone 6

Z6S6

PID

5

+
-

Sm5

Zone 5

Z5
S5 

PID

4

+
-

Sm4

Zone 4

Z4
S4 

PID

1

+
-

Sm1 S1 

K1

PreComp

Figure 4. The system block diagram.

To deal with low frequency disturbances and to obtain good tracking of step inputs the
plant is required to be a type-1 system. Thus a performance weighting function was defined
as:

[ ] [ ]W s
s

s
I

s

s
Ip ( ) .

.= +





 = +





50 1

100
0 5

0 02

(23)

Considering the overall characteristics of the system, the maximum system gain drift is
expected to be less than 15 %. Then, the uncertainty weighting function was defined as:
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To ensure a good steady state performance, the closed-loop system requires low
frequency decoupling at 0 rd/min Galvez et al (1995), Kouvaritakis et al (1979), MacFarlane
et al (1977) and Mees (1989). Then, the decoupling pre-compensator can be computed as

K G1
10

01467 01113 0 0822 0 0579 0 0368 0 0179

01113 0 2289 01692 01191 0 0758 0 0368

0 0822 01692 0 2658 01871 01191 0 0579

0 0579 01191 01871 0 2658 01692 0 0822

0 0368 0 0758 01191 01692 0 2289 01113

0 0179 0 0368 0 0579 0 0822

= ≅−

+ − + − + −
− + − + − +
+ − + − + −
− + − + − +
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Figure 5 shows the test functions for nominal performance (1 wp ) and robust stability

(1 wi ). Figure 6 presents partial Bode diagrams of the open loop pre-compensated system. It
can be seen that the cross-coupling gains became neglected at low frequencies and also that
the system pass band  was substantially reduced by the pre-compensation.
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Figure 5. The nominal performance (1 wp )

and robust stability (1 wi ) tests.
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Figure 6. Bode diagrams of the pre-
compensated open loop system.

Since the pre-compensated system has became diagonal dominant at low frequencies,
then a diagonal PID controller can be designed to set the steady state error to zero. Thus, a
multivariable controller can be built as K s K K s( ) ( )= 1 2  and the open loop transfer function
matrix becomes G s K s G s K K s( ) ( ) ( ) ( )= 1 2

Figure 7 shows the principal gains of the open-loop system (controller + plant). Figure 8
shows the nominal performance criterion corresponding to Equation 8. Figure 9 shows the
robust performance condition for non structured uncertainty given by Equation 9. Figure 10
shows the robust stability criterion for non structured uncertainty given by Equation 12.
Figure 11 shows the µ (Q) value for robust performance (Equation 13). Figure 12 shows the
µ (Q22) value for robust stability (Equation 16).
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Figure 7. The principal gains of the open-
loop  system (controller + plant).
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Figure 8. The nominal performance
condition given by Equation 8 (NSU).
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Figure 9. The robust performance
condition given by Equation 9 (NSU)..
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Figure 10. The robust stability condition
given by Equation 12, (NSU).
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Figure 11. The µ (Q) condition for robust
performance, Equation 13, (SU).
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Figure 12. The µ (Q22) condition for robust
stability, Equation 16, (SU).

5. SIMULATION RESULTS

Simulation experiments were performed to validate the multivariable control design. The
tri-diagonal model used in the numerical simulations includes the saturation characteristics of
the power source. Due to the unidirectional power source, negative power values can not be



applied in practice. Usually, this causes a high level of performance deterioration on the
multivariable pre-compensator and controller which are designed based on a linear model of
the plant. However, it was shown in Galvez et al (1995) that, in this case, the system behaves
linearly under the control design specifications.

Figure 13 presents simulation results for the closed loop pre-compensated system (Zones
1, 2 and 3). The multivariable diagonal PI controller (K2a(s)) was designed to satisfy the
stability and robustness specifications given in the previous section (Kp = 3.0 and Ki =
0.0125). This choice for the control parameters delivered a time response with a settling time
of ts = 200 minutes and damping ratio of ξ = 0.8.

[ ]K K
K

I Ka p
i

p is
K2 1 30 0 0125= +



 = =; . , .

(26)

Figure 14 presents simulation results for the closed loop pre-compensated system (Zones
1, 2 and 3). In this case a multivariable diagonal PID  controller (K2b(s)) was manually tuned
(Kp = 6.5, Ki = 0.015 and Kd = 1.25) to obtain a rise time of tr = 40 minutes with a damping
ratio of ξ = 0.5.

[ ]K K
K

K I Kb p
i

d p i ds
s K K2 1 6 5 0 015 125= + +



 = = =; . , . , .

(27)
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Figure 13. The pre-compensated closed
loop system step response with PI

controller.
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Figure 14. The pre-compensated closed
loop system step response with PID

controller.

6. FINAL COMMENTS

An interesting application of multivariable frequency domain techniques to a nonlinear
electrical oven with six heating zones has been presented in this work. Due to the oven
construction, the heat flow rate among the zones was high and so it was the cross-coupling
between inputs and outputs.

It was verified that for some temperature profiles, the nonlinear characteristics of the
power source can be avoided allowing a linear analysis and design. The system decoupling
was easily reached by using a pre-compensator tuned at 0 rd/min. Since the pre-compensated



plant became clearly diagonal dominant at low frequencies, the system specification were
reached using a diagonal PID controller.

Multivariable frequency domain techniques were used to validate the controller.
However, both conditions for robust performance under unstructured and structured
uncertainty (Equations 9 and 13) gave conservative results as it was verified in simulation and
in practice.

Finally, a general procedure for control design can be suggested as follows:
•  Find the optimal cross-coupling gains and modify, if possible, the plant gains to those

values. Compute a decoupling gain matrix tuned at 0 rd/min.
•  Design a multivariable feedback controller, such as a lag type diagonal controller, tuned to

met the  performance specifications.
•  Whether high frequency compensation is required, compute a decoupling controller at the

desired frequency and introduce a lead type controller to match the system specifications.
•  Validate the controller design by some multivariable technique.
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